Skip to contents
SVG 1.0.0
First Release
New Features
-
Unified interface:
CalSVG() function provides a single entry point for all SVG detection methods
-
Six SVG detection methods implemented with consistent output format:
Spatial Network Construction
Data Simulation
-
simulate_spatial_data(): Generate simulated spatial transcriptomics data with known SVGs
- Support for multiple spatial patterns: gradient, hotspot, periodic, cluster
- C++ implementation via Rcpp/RcppArmadillo for computationally intensive operations
- Parallel processing support via
n_threads parameter
- Efficient memory usage for large-scale data
Documentation
- Comprehensive vignette with mathematical background
- Complete function documentation with examples
- Benchmark comparison between methods
Dependencies
- Core: Matrix, Rcpp, RcppArmadillo
- Optional: geometry, RANN, BRISC, CompQuadForm, BiocParallel, spatstat